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ON GENERALIZED SYMMETRIC BI-f-DERIVATIONS
OF LATTICES

Kyung Ho Kim

ABSTRACT. The goal of this paper is to introduce the notion of gen-
eralized symmetric bi-f-derivations in lattices and to study some
properties of generalized symmetric f-derivations of lattice. More-
over, we consider generalized isotone symmetric bi-f-derivations
and fixed sets related to generalized symmetric bi- f-derivations.

1. Introduction

Lattices play an important role in many fields such as information the-
ory, information retrieval, information access controls and cryptanalysis.
The properties of lattices were widely researched (for example, [1], [10],
[14]). In the theory of rings and near rings, the properties of derivations
are an important topic to study ([6], [12]). G. Szdsz [13] introduced the
notion of derivation on a lattice and discussed some related properties,
And then the notion of f-derivation, symmetric bi-derivations and per-
muting tri-derivations in lattices are introduced and proved some results
(see to the reference [2], [3], [9], [7], [8])-

The goal of this paper is to introduce the notion of generalized sym-
metric bi- f-derivations in lattices and to study some properties of gen-
eralized symmetric f-derivations of lattice. Furthermore, we take into
account generalized isotone symmetric bi-f-derivations and fixed sets
related to generalized symmetric bi- f-derivations.
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2. Preliminary

DEFINITION 2.1. Let L be a nonempty set endowed with operations A
and V. By a lattice (L, \,V), we mean a set L satisfying the following
conditions :

(1) zANxz =z, xVax =z for every x € L.

(2) xAy=yAz,zVy=yVxforevery x,y € L.

3) Ay Az=xA(yAz),(xVy)Vz=aV(yVz) for every x,y, z € L.
4) (xAy)Ve ==z, (xVy) ANz =z for every x,y € L.

DEFINITION 2.2. Let (L,A,V) be a lattice. A binary relation < is
defined by = < y if and only if t Ay = x and xVy = y for every z,y € L.

LEMMA 2.3. Let (L, A, V) be a lattice. Define the binary relation <
as the Definition 2.2. Then (L, <) is a poset and for any xz,y € L, z Ay
is the g.L.b. of {z,y} and x V y is the Lu.b. of {z,y}.

DEFINITION 2.4. A lattice L is distributive if the identity (1) or (2)
holds:
(1) A (yVz)=(xAy)V(zAz) for every x,y,z € L.
(2) zV(yANz)=(zVy)A(xVz) for every z,y,z € L.

In any lattice, the conditions (1) and (2) are equivalent.

DEFINITION 2.5. A lattice L is modular if the following identity holds :
Ifz <z thenxV(yAz)=(xVy)Az for every x,y,z € L.

DEFINITION 2.6. A non-empty subset [ is called an ideal if the fol-
lowing conditions hold :

(1) Ife <yand y € I, then x € [ for all x,y € L.

(2) If z,y € I thenxzVyel

DEFINITION 2.7. Let (L,A,V) be a lattice. Let f : L — M be a
function from a lattice L to a lattice M.

(1) f is called a meet-homomorphism if f(x Ay) = f(x) A f(y) for
every x,y € L.

(2) fis called a join-homomorphism if f(zVy) = f(x)V f(y) for every
x,y € L.

(3) f is called a lattice-homomorphism if f is a join-homomorphism
and a meet-homomorphism.

DEFINITION 2.8. Let L be a lattice. A function d : L — L is called a
f-derivation if there exists a function f : L — L such that

d(xz Ny) = (d(x) A f(y) vV (f(z) Ad(y))
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for all x,y € L.

DEFINITION 2.9. ([11]) Let L be a lattice and D(.,.) : L x L — L be
a symmetric mapping. We call D a symmetric bi-f-derivation on L if
there exists a function f: L — L such that

D(z Ay, z) = (D(x,2) A f(y) V (f(@) A D(y, 2))
for all x,y € L.

PRrROPOSITION 2.10. ([11]) Let L be a lattice and let d be a trace of
symmetric bi-f-derivation D. Then
(1) D(z,y) < f(x) and D(z,y) < f(y) for every xz,y € L.
(2) D(z,y) < f(x) A f(y) for every x,y € L.
(3) d(x) < f(x) for every x,y € L.

3. Generalized symmetric bi-f-derivations of lattices

Throughout the paper, L denotes a lattice unless otherwise specified.

DEFINITION 3.1. Let D : L — L be a symmetric bi- f-derivation on
lattice L. A symmetric map A : L x L — L is called a generalized
symmetric bi-f- derivation associated with D if

Az ANy, z) = (Az,2) A f(y) V (f(z) AD(y, 2))
for all x,y, z € L. Obviously, a generalized symmetric bi- f-derivation A
on L satisfies the relation

A(z,y Az) = (Az,y) A f(2) V (f(y) A D(z,2))
for all z,y,z € L.

DEFINITION 3.2. Let L be a lattice. The mapping 6 : L — L de-
fined by §(z) = A(x,z) for all x € L, is called the trace of generalized
symmetric bi- f-derivation A.

ExXAMPLE 3.3. Let L be a lattice with a least element 0 and let f be
an endomorphism on L. The mapping D(z,y) = 0 for all z,y € L, is a
symmetric bi-f- derivation on L. Define a mapping on L by A(z,y) =
f(z) A f(y) for all ,y € L. Then we can see that A is a generalized
symmetric bi- f-derivation associated with D on L.

EXAMPLE 3.4. Let L be a lattice with a least element 0 and let f be
an endomorphism on L and let ¢ € L. The mapping on L defined by
Az,y) = (f(z) A f(y)) Aa, for all z,y € L, is a generalized symmetric
bi- f-derivation associated with D(z,y) =0 on L.
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ExAMPLE 3.5. Let L = {0, 1,2} be a lattice of following Figure 1 and
define mappings D, f and A on L by

1 it (z,y) = (0,0),(0,1),(1,0)
Dia.y) = {o if (,y) = (0,2), (2,0), (1,1), (2,2), (1,2), (2, 1),

f(x):{1 ifz=0

2 ifz=1,2
and
1 ifx=(0,0),(0,1),(1,0),(0,2),(2,0
Ay = {1 T2=0.0.0.1).(1,0),(0.2) (2,0
2 ifx=(1,1),(1,2),(2,1),(2,2
2
1
0
FiGURE 1

Then it is easily checked that A is a generalized symmetric bi-f-
derivation of lattice L.

PROPOSITION 3.6. Let A is a generalized symmetric bi-f-derivation
associated with a symmetric bi-f-derivation D. Then the mapping fi :
L — L defined by fi(x) = A(x,2), for all x,z € L, and fo : L — L
defined by fa(y) = A(x,y) for all x,y € L, are generalized f-derivation
on L.

Proof. For every x,y,z € L, we have
filx Ny) = Az Ny, 2)
= (f(@) A D(y,2))) V (Az,z) A f(y))
= (@) Agr(y)) v (fr(z) A fy)-
In this equation, the mapping g : L — L defined by ¢1(y) = D(y, 2) is a
f- derivation on L, where D is a symmetric bi- f-derivation on L. Hence

the mapping f; is a generalized symmetric bi- f-derivation associated
with D. ]

PRrOPOSITION 3.7. Let A be a generalized symmetric bi-f-derivation
associated with a symmetric bi-f-derivation D. If L is a distributive
lattice, then we have
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(x,y) < A(z,y) for every x,y € L.

(x,y) < f(x) and A(z,y) < f(y) for every z,y € L.

(x ANw,y) < Az,y) V A(w, y) for every x,y € L.

(x ANw,y) < f(z)V f(w) for every w,z,y € L.

If L has a least element 0, f(0) = 0 implies A(0,y) = 0 for every
y€ L.

(1) D
(2) A
(3) A
(4) A
()

Az,y) = Az Aa,y) = (Az,y) A (@) v (f(z) A D(z,y))
= (Alz,y) V f(x)) V D(z,y).

This implies D(x,y) < A(x,y) for every z,y € L.
(2) Since z A x = x for all z € L, we have by Proposition 2.10,

Az,y) = Az Aw,y) = (Alz,y) A f(@)) vV (f (@) A D(z,y))
= (A(z,y) A f(2)) V D(z,y)
= (A(z,y) vV D(z,y)) A (f(x) V D(z,y))
= Az, y) A f(a).
Therefore A(x,y) < f(x) for all z,y € L. Similarly, we can check
A(z,y) < f(y) for all x,y € L.
(3) Since f(z) A D(w,y) < D(w,y) < A(z,y) and A(z,y) A f(w) <
A(z,y) for every w,x,y € L, we obtain
(Az,y) A f(w)) vV (f(z) A D(w,y)) < Az, y) V Aw, y).
That is, A(z Aw,y) < A(z,y) V A(w, y).
(4) Since A(z,y) A f(w) < f(w) and f(z) A D(w,y
(Az,y) A f(w)) vV (f(z) A D(w,y))
for every w,z,y € L. That is, D(z A w,y)
w,x,y € L.
(5) Since 0 is the least element of L, we have
A(0,y) = A0 A0, y) = (A(0,y) A f(0)) Vv (f(0) A D(0,y))
=0Vv0=0
for all z,y € L. O

< f(
< f(

COROLLARY 3.8. Let A be a generalized symmetric bi-f-derivation
associated with a symmetric bi-f-derivation D and let 0 be a trace of A
and let d be a trace of D. If L is a distributive lattice,, then the following
conditions hold.

(1) A(z,y) < f(x) A f(y) for every x,y € L.
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(2) d(z) < d(x) < f(x) for every x,y € L.
(3) d(z) = x implies §(z) = x for x,y € L.

THEOREM 3.9. Let L be a distributive lattice and let A be a gen-
eralized symmetric bi-f-derivation associated with a symmetric bi-f-
derivation D and let § a trace of A and let d be a trace of D. Then we
have

oz ANy) = D(x,y) vV (f(x) Ad(y) vV (f(y) Ao(z))
for all x,y € L.

Proof. Using Proposition 3.7 (1), we have
Sz ANy)=A(x ANy, xA\y)
= (A Ay,z) A f(y) vV (D( Ay,y) A f(z))

= (((Az, ) A f(y)) v (f (@) A D(2,y))) A f(y))
Vv (f(2) AN(D(,y) A f(y) v (F(x) A D(y,y))))
= ((0(=) A f(y) v D(,9)) A f(y) V() A (D(2,y))

(
vV (f(z) Nd(y))))

= ((6(x) A f(y) v D(a,y)) V (D(2,y) V (f(2) Ad(y)))
0(x) A fy)) v (d(y) A fz)) vV D(z,y)

for every x,y € L. O

THEOREM 3.10. Let L be a distributive lattice and let A1 and Ay be
generalized symmetric bi- f-derivations associated with a same symmet-
ric bi-f-derivation D. Then the mapping Ay A Ag defined by

(A1 A Ag)(,y) = Ar(m,y) A Ao(x,y)

for every x,y € L is a generalized symmetric bi-f-derivations associated
with a symmetric bi-f-derivation D.

Proof. For every x,y,z € L, we have
(AT ANA)(z ANy, 2) =A1(x ANy, 2) ANAg(x ANy, 2)
= ((Aw(z, 2) A f(y)) vV (f () A D(y, 2)))
A ((Az(z,2) A f(y) v (f(z) A D(y, 2)))
= (((Ax(z,2) A Fy) A (Aa(z,2) A f(y))))
V (f(z) A D(y,z))
= (Ar(z,2) A Da(x,2) A fy) vV (f (=) A D(y, 2))
= (AL A Ag)(z,2) A F(y)) V (f(2) A Dy, 2))-
This completes the proof. O
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THEOREM 3.11. Let L be a distributive lattice and let A1 and As be
generalized symmetric bi- f-derivations associated with a same symmet-
ric bi-f-derivation D. Then the mapping Ay V Ag defined by

(Al v A2)(x7y) = Al(xa y) v AQ(xay)

for every x,y € L is a generalized symmetric bi- f-derivations associated
with a symmetric bi-f-derivation D.

Proof. For every x,y,z € L, we have
(A1 VA (x ANy, z) =A1(x ANy, 2z) VAs(x ANy, 2)
= ((Aw(z, 2) A f(y)) vV (f(z) A D(y, 2)))
V ((Az(z,2) A f(y) vV (f(z) A D(y, 2)))
= (((Ax(z,2) A fy) V (Aa(z,2) A f(y))))
V (f(z) A D(y,z))
= (Au(z,2) V Aa(z,2) A fy) vV (f (=) A D(y, 2))
= (A1 VvV Ag)(z,2) A f(y) vV (f(@) A D(y, 2)).
This completes the proof. O

DEeFINITION 3.12. Let L be a distributive lattice and let A be a
generalized symmetric bi- f-derivations associated with a symmetric bi-
f-derivation D and let § be a trace of A. If x < y implies §(x) < §(y)
for every x,y € L, then § is called an isotone mapping.

THEOREM 3.13. Let L be a distributive lattice with greatest element
1 and let f be a meet-homomorphism on L and let § be a trace of
generalized symmetric bi-f-derivation A associated with a symmetric
bi-f-derivation D. Then the following conditions are equivalent.

(1) 0 is an isotone mapping on L.

(2) d(z) = f(z) NO(1) for every x € L.

(3) d(z Ny) =6(x) Nd(y) for every z,y € L.
(4) 6(x) Vi(y) < d(x Vy) for every z,y € L.

Proof. (1) = (2). Since d is isotone and = < 1, we have §(z) < 4(1).
By Proposition 3.7(1), we obtain §(z) < f(z), and so d(z) < f(z)Ad(1).
By Corollary 3.8(2), we have f(z)Ad(1) < d(x). Hence we obtain §(z) =
flz)Ad(1) for all x € L.

(2) = (3). Let 6(x) = f(z) A6(1) for all x € L. Then we have

oz Ny) = flzAy) AS(L) = (f(z) A F(y)) A (5(1) AS(1))
= (f@) Ao A (fy) A1) = d(x) Ad(y)
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for all x,y € L.

(3) = (1). Let 6(zAy) = 6(x)Ad(y) and < y. Then §(x) = §(xAy) =
d(z) Nd(y). Hence d(z) < (y) for every z,y € L.

(1) = (4). Let 0 be isotone. Since z < xVyand y <z Vy, i(x) <
d(x Vy) and 0(y) < d(x V y). Hence §(z) V d(y) < d(x V y) for every
z,y € L.

(4) = (1). Let = < y. Since §(z) < d(z Vy) = I(y), which implies
d(z) < d(y) for every w,z,y € L. Hence ¢ is isotone. O

DEFINITION 3.14. Let L be a lattice and A be a generalized sym-
metric bi- f-derivation associated with a symmetric bi- f-derivation D. If
x < w implies A(z,y) < A(w,y) for every w,z,y € L, then A is called
a generalized isotone symmetric bi-f-derivation of L.

THEOREM 3.15. Let L be a lattice with greatest element 1, A a
generalized symmetric bi-f-derivation associated with a symmetric bi-
f-derivation D and let f be a meet-homomorphism on L. The following
conditions are equivalent.

(1) A is a generalized isotone symmetric bi-f-derivation of L.
(2) Az,y) VA(w,y) < A(x Vw,y) for every w,z,y € L.

(3) A(z,y) = f(x) NA(L,y) for every z,y € L.

(4) Az Aw,y) = Az, y) A A(w, y) for every w,z,y € L.

Proof. (1) = (2). Suppose that A is a generalized isotone symmetric
bi- f-derivation. Since x < x Vw and w < x V w for every w,x,y € L,
we obtain A(z,y) < A(zx V w,y) and A(w,y) < A(x V w,y). Therefore,
Az, y) V Aw,y) < Az Vw,y).

(2) = (1). Suppose that A(z,y) V A(w,y) < Az Vw,y) and z < w
for all w,x,y € L. Then we have

Alz,y) < A(z,y) VA(w,y) < Az Vw,y) = A(w,y).

Hence A is a generalized isotone symmetric bi- f-derivation on L.

(1) = (3). Suppose that A is a generalized isotone symmetric bi- f-
derivation. Since A(z,y) < A(1,y), we have A(z,y) < f(x) A A(L,y)
by Proposition 3.6 (1). Hence we have

Az, y) = (A(Ly) A f(x) vV D(z,y) = AL, y) A f(z)

for every x,y € L.
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(3) = (4). Suppose that A(z,y) = f(xz) A A(1,y). Then we have
Alx Aw,y) = f(z Aw) ANA(L,y)

f(@) A f(w) AD(,y)

(f(él?) AD(L,y)) A (f(w) AD(1,y))

D(z,y) A D(w,y)

for every w,z,y € L.

(4) = (1). Let A(x Aw,y) = A(z,y) A A(w,y) and < w. Then we
have A(z,y) = A(z A w,y) = Az,y) A A(w,y). Therefore, A(z,y) <
A(w,y) for every w,z,y € L. O

Let A be a generalized symmetric bi- f-derivation associated with a sym-
metric bi-f-derivation D and let § be a trace of A and let d be a trace
of D. For each a € L and define sets Fixg(L) and Fizs(L) by

Fizp(L)={x € L | D(z,a) = f(x)}
and

Fizpa(L) ={x € L| A(z,a) = f(z)}.

LEMMA 3.16. Let L be a lattice and let A be a generalized symmetric
bi- f-derivation associated with a symmetric bi- f-derivation D. Then we
have Fixp(L) C Fixza(L).

Proof. Let © € Fixzp(L). Then we have D(x,a) = f(z) for a € L.
Hence
Az, a) = Alz ANz, a) = (A(z,a) A f(2) V (f(z) A D(z,q))
= (Az,a) A f(2) V (f(z) A flz))
= (A(z,a) A f(x) V f(z) = f(z)
This implies x € Fiza(L), that is, Fizp(L) C Fixa(L). O
ProrosITION 3.17. Let L be a distributive lattice and let A be a
generalized symmetric bi- f-derivation associated with a symmetric bi-f-
derivation D. If f is isotone, x < y and y € Fixzp(L), then x € Fixa(L)
for all x,y € L.
Proof. Let y € Fizp(L). Then we get D(y,a) = f(y). Hence we have
A(z,a) = Az Ny a) = (A(z,a) A f(2)) V (f(2) A D(y,a))
= (A(z,a) A f f@) N fy) = (Alz,a) A f(z)) V f(z)
= (A(z,a) V f )V f(x)) = f(z)V flz) = f(z).
This implies « € Fixza(L). O

x

(
x)
)

—~~

)V (
) A (
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DEeFINITION 3.18. Let L be a lattice. The mapping A satisfying
Az Vy,z) = Az, z) V Ay, 2) for all z,y,z € L, is called a joinitive
mapping on L.

THEOREM 3.19. Let L be a lattice and let A be a generalized symmet-
ric bi-f-derivation associated with a symmetric bi-f-derivation D. If f
is a join-homomorphism on L and let A is joinitive, then x,y € Fixza(L)
implies x V y € Fiza(L).

Proof. Let z,y € Fixa(L). Then A(z,a) = f(z) and A(y,a) = f(y).
Hence A(z Vy,a) = A(z,a) V A(y,a) = f(x) V f(y) = f(z Vy), which
implies x Vy € Fiza(L). O

PrOPOSITION 3.20. Let L be a lattice and let A be a generalized sym-
metric bi-f-derivation associated with a symmetric bi-f-derivation D. If
f is a meet-homomorphism on L and x € Fizxa(L) and y € Fizp(L),
we have x Ny € Fiza(L) for all x,y € L.

Proof. Let x € Fizxa(L) and y € Fizp(L). Then f(x) = A(z,a) and
f(y) = D(y,a). Hence we have

Az Ny,a) = (A(z,a) A f(y)) V (f(z) A D(y,a))
= (f@) A fy) Vv (f@) A fy)
= f@) A fly) = [z Ay).
Hence z Ay € Fiza(L). O

PRrOPOSITION 3.21. Let L be a lattice and let A be a generalized
symmetric bi-f-derivation associated with a symmetric bi-f-derivation
D. Then, for every w,x,y € L, the following identities hold.

(1) If A is a generalized isotone symmetric bi-f-derivation, then
A(z,y) = D(z,y) vV (A(z V w,y) A f(z))

for every w,x,y € L.
(2) If f is a join-homomorphism on L, then

Az,y) = D(z,y) V (Alz V w,y) A f(2))

for every w,x,y € L.
(3) If f(z) is an increasing function, then

Az,y) = D(z,y) vV (f(2) A Az Vw,y))

for every w,x,y € L.
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Proof. (1) Let A be a generalized isotone symmetric bi- f-derivation.
Then we have

Az,y) = A((z Vw) Az, y)
= (AlzVw,y) A f(2) V (f(xVw)AD(,y))
= (AlzVw,y) A f(z)V D(z,y)
z,y) <Az Vw,y) < f(x Vw) for every w,z,y € L.

since D(z,y) < A
(2) Since D(z,
we obtain
Az,y) = Al(z Vw) N, y)
= (AlzVw,y) A f(2) V (fzVw)AD(,y))
= (Alz Vw,y) A f(x)) vV D(z,y)

for every w,z,y € L.

(3) Since f is an increasing function and z < zVw, we have D(z,y) <
f(z) < f(x Vw) and so,

Az, y) = A((z Vw) Az, y)
= (AlzVw,y) A f(x)) v (f(zVw)AD(,y))
= (A(zVw,y) A f(z))V D(x,y)
for every w,z,y € L. O

References

[1] G. Birkhoof, Lattice Theory, American Mathematical Society Colloquium, 1940.

[2] Y. Ceven, Symmetric bi-derivations of lattice, Quaest. Math., 32 (2009), no. 1-2,
241-245.

[3] Y. Ceven and M. A. Oztiirk, On f-derivations of lattice, Bull. Korean Math.
Soc., 45 (2008), no. 4, 701-707.

[4] L. Ferrari, On derivations of lattices, Pure math. appl., 12 (2001), no. 4, 365-382.

[5] S. Harmaitree and Utsanee Leerawat, The generalized f-derivations of lattices,
Scientiae Magna, 7 (2011), no. 1, 114-120.

[6] B. Hvala, Generalized derivation in rings, Commun. Algebra., 26 (1998), no. 4,
1147-1166.

[7] M. A. Oztiirk, H. Yazarh and K. H. Kim, Permuting tri-derivations in lattices,
Quaest. Math., 32 (2009), no. 3, 415-425.

[8] H. Yazarh and M. A. Oztiirk, Permuting tri-f-derivations in lattices, Commun.
Korean Math. Soc., 26 (2011), no. 13-21.

[9] A. R. Khan and M. A. Chaudhry, Permuting f-derivations on lattices, Int. J.
Algebra., 5 (2011), 471-481.


https://www.tandfonline.com/doi/abs/10.2989/QM.2009.32.2.6.799?journalCode=tqma20
http://koreascience.or.kr/article/JAKO200811850423261.page
https://www.semanticscholar.org/paper/On-derivations-of-lattices-Ferrari/8700db3d3571cf35f4f0d6f1d9983b4132df2d16
https://go.gale.com/ps/i.do?id=GALE%7CA268651355&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=15566706&p=AONE&sw=w&userGroupName=anon%7E1a1e53ac
https://www.tandfonline.com/doi/abs/10.1080/00927879808826190?journalCode=lagb20
https://www.researchgate.net/publication/233460165_Permuting_tri-derivations_in_lattices
https://www.koreascience.or.kr/article/JAKO201107049668618.page
https://www.researchgate.net/publication/265587983_Permuting_f-triderivations_on_lattices

136 Kyung Ho Kim

[10] F. Karacal, On the direct decomposability of strong negations and S-implication
operators on product lattices, Inf. Sci., 176 (2006), 3011-3025.

[11] K. H. Kim, Symmetric bi-f-derivations in lattices, Int. J. Math. Arch., 3 (2012),
no. 10, 3676-3683.

[12] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc., 8 (1957), 1093-
1100.

[13] G. Szész, Derivations of lattices, Acta Sci. Math. (Szeged), 37 (1975), 149-154.

[14] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inf. Sci., 178 (2008),
no. 2, 307-316.

Kyung Ho Kim

Department of Mathematics,

Korea National University of Transportation
Chungju 27469, Republic of Korea

E-mail: ghkim@ut.ac.kr


https://www.sciencedirect.com/science/article/pii/S0020025505003506
https://www.semanticscholar.org/paper/%E2%80%A2-SYMMETRIC-BI-f-DERIVATIONS-IN-LATTICES-Kim/817d601c629aac89c3b58a62174835f0c1a810e8
https://www.jstor.org/stable/2032686
https://www.sciencedirect.com/science/article/pii/S0020025507004112



