ON GENERALIZED SYMMETRIC BI-f-DERIVATIONS OF LATTICES

Kyung Ho Kim

ABSTRACT. The goal of this paper is to introduce the notion of generalized symmetric bi-f-derivations in lattices and to study some properties of generalized symmetric f-derivations of lattice. Moreover, we consider generalized isotone symmetric bi-f-derivations and fixed sets related to generalized symmetric bi-f-derivations.

1. Introduction

Lattices play an important role in many fields such as information theory, information retrieval, information access controls and cryptanalysis. The properties of lattices were widely researched (for example, [1], [10], [14]). In the theory of rings and near rings, the properties of derivations are an important topic to study ([6], [12]). G. Szász [13] introduced the notion of derivation on a lattice and discussed some related properties, And then the notion of f-derivation, symmetric bi-derivations and permuting tri-derivations in lattices are introduced and proved some results (see to the reference [2], [3], [9], [7], [8]).

The goal of this paper is to introduce the notion of generalized symmetric bi-f-derivations in lattices and to study some properties of generalized symmetric f-derivations of lattice. Furthermore, we take into account generalized isotone symmetric bi-f-derivations and fixed sets related to generalized symmetric bi-f-derivations.

Received April 19, 2022; Accepted May 25, 2022.

²⁰¹⁰ Mathematics Subject Classification: 16Y30, 03G25.

Key words and phrases: Lattice, generalized symmetric bi-f-derivation, isotone, $Fix_d(L)$, joinitive.

This was supported by Korea National University of Transportation in 2022.

2. Preliminary

DEFINITION 2.1. Let L be a nonempty set endowed with operations \land and \lor . By a *lattice* (L, \land, \lor) , we mean a set L satisfying the following conditions:

- (1) $x \wedge x = x$, $x \vee x = x$ for every $x \in L$.
- (2) $x \wedge y = y \wedge x$, $x \vee y = y \vee x$ for every $x, y \in L$.
- (3) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z)$ for every $x, y, z \in L$.
- (4) $(x \wedge y) \vee x = x$, $(x \vee y) \wedge x = x$ for every $x, y \in L$.

DEFINITION 2.2. Let (L, \wedge, \vee) be a lattice. A binary relation \leq is defined by $x \leq y$ if and only if $x \wedge y = x$ and $x \vee y = y$ for every $x, y \in L$.

LEMMA 2.3. Let (L, \land, \lor) be a lattice. Define the binary relation \le as the Definition 2.2. Then (L, \le) is a poset and for any $x, y \in L$, $x \land y$ is the g.l.b. of $\{x, y\}$ and $x \lor y$ is the l.u.b. of $\{x, y\}$.

DEFINITION 2.4. A lattice L is distributive if the identity (1) or (2) holds:

- (1) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ for every $x, y, z \in L$.
- (2) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ for every $x, y, z \in L$.

In any lattice, the conditions (1) and (2) are equivalent.

DEFINITION 2.5. A lattice L is modular if the following identity holds: If $x \leq z$, then $x \vee (y \wedge z) = (x \vee y) \wedge z$ for every $x, y, z \in L$.

DEFINITION 2.6. A non-empty subset I is called an ideal if the following conditions hold:

- (1) If $x \leq y$ and $y \in I$, then $x \in I$ for all $x, y \in L$.
- (2) If $x, y \in I$ then $x \vee y \in I$.

DEFINITION 2.7. Let (L, \wedge, \vee) be a lattice. Let $f: L \to M$ be a function from a lattice L to a lattice M.

- (1) f is called a meet-homomorphism if $f(x \wedge y) = f(x) \wedge f(y)$ for every $x, y \in L$.
- (2) f is called a *join-homomorphism* if $f(x \lor y) = f(x) \lor f(y)$ for every $x, y \in L$.
- (3) f is called a *lattice-homomorphism* if f is a join-homomorphism and a meet-homomorphism.

DEFINITION 2.8. Let L be a lattice. A function $d:L\to L$ is called a f-derivation if there exists a function $f:L\to L$ such that

$$d(x \wedge y) = (d(x) \wedge f(y)) \vee (f(x) \wedge d(y))$$

for all $x, y \in L$.

DEFINITION 2.9. ([11]) Let L be a lattice and $D(.,.): L \times L \to L$ be a symmetric mapping. We call D a symmetric bi-f-derivation on L if there exists a function $f: L \to L$ such that

$$D(x \wedge y, z) = (D(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z))$$

for all $x, y \in L$.

PROPOSITION 2.10. ([11]) Let L be a lattice and let d be a trace of symmetric bi-f-derivation D. Then

- (1) $D(x,y) \le f(x)$ and $D(x,y) \le f(y)$ for every $x,y \in L$.
- (2) $D(x,y) \le f(x) \land f(y)$ for every $x,y \in L$.
- (3) $d(x) \le f(x)$ for every $x, y \in L$.

3. Generalized symmetric bi-f-derivations of lattices

Throughout the paper, L denotes a lattice unless otherwise specified.

DEFINITION 3.1. Let $D:L\to L$ be a symmetric bi-f-derivation on lattice L. A symmetric map $\Delta:L\times L\to L$ is called a *generalized* symmetric bi-f- derivation associated with D if

$$\Delta(x \land y, z) = (\Delta(x, z) \land f(y)) \lor (f(x) \land D(y, z))$$

for all $x, y, z \in L$. Obviously, a generalized symmetric bi-f-derivation Δ on L satisfies the relation

$$\Delta(x, y \wedge z) = (\Delta(x, y) \wedge f(z)) \vee (f(y) \wedge D(x, z))$$

for all $x, y, z \in L$.

DEFINITION 3.2. Let L be a lattice. The mapping $\delta: L \to L$ defined by $\delta(x) = \Delta(x, x)$ for all $x \in L$, is called the *trace* of generalized symmetric bi-f-derivation Δ .

EXAMPLE 3.3. Let L be a lattice with a least element 0 and let f be an endomorphism on L. The mapping D(x,y)=0 for all $x,y\in L$, is a symmetric bi-f- derivation on L. Define a mapping on L by $\Delta(x,y)=f(x)\wedge f(y)$ for all $x,y\in L$. Then we can see that Δ is a generalized symmetric bi-f-derivation associated with D on L.

EXAMPLE 3.4. Let L be a lattice with a least element 0 and let f be an endomorphism on L and let $a \in L$. The mapping on L defined by $\Delta(x,y) = (f(x) \wedge f(y)) \wedge a$, for all $x,y \in L$, is a generalized symmetric bi-f-derivation associated with D(x,y) = 0 on L.

EXAMPLE 3.5. Let $L = \{0, 1, 2\}$ be a lattice of following Figure 1 and define mappings D, f and Δ on L by

$$D(x,y) = \begin{cases} 1 & \text{if } (x,y) = (0,0), (0,1), (1,0) \\ 0 & \text{if } (x,y) = (0,2), (2,0), (1,1), (2,2), (1,2), (2,1), \end{cases}$$
$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 2 & \text{if } x = 1, 2 \end{cases}$$

and

$$\Delta(x,y) = \begin{cases} 1 & \text{if } x = (0,0), (0,1), (1,0), (0,2), (2,0) \\ 2 & \text{if } x = (1,1), (1,2), (2,1), (2,2). \end{cases}$$

Figure 1

Then it is easily checked that Δ is a generalized symmetric bi-f-derivation of lattice L.

PROPOSITION 3.6. Let Δ is a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. Then the mapping $f_1: L \to L$ defined by $f_1(x) = \Delta(x, z)$, for all $x, z \in L$, and $f_2: L \to L$ defined by $f_2(y) = \Delta(x, y)$ for all $x, y \in L$, are generalized f-derivation on L.

Proof. For every $x, y, z \in L$, we have

$$f_1(x \wedge y) = \Delta(x \wedge y, z)$$

= $(f(x) \wedge D(y, z))) \vee (\Delta(x, z) \wedge f(y))$
= $(f(x) \wedge g_1(y)) \vee (f_1(x) \wedge f(y)).$

In this equation, the mapping $g_1: L \to L$ defined by $g_1(y) = D(y, z)$ is a f- derivation on L, where D is a symmetric bi-f-derivation on L. Hence the mapping f_1 is a generalized symmetric bi-f-derivation associated with D.

Proposition 3.7. Let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. If L is a distributive lattice, then we have

- (1) $D(x,y) \leq \Delta(x,y)$ for every $x,y \in L$.
- (2) $\Delta(x,y) \leq f(x)$ and $\Delta(x,y) \leq f(y)$ for every $x,y \in L$.
- (3) $\Delta(x \wedge w, y) \leq \Delta(x, y) \vee \Delta(w, y)$ for every $x, y \in L$.
- (4) $\Delta(x \wedge w, y) \leq f(x) \vee f(w)$ for every $w, x, y \in L$.
- (5) If L has a least element 0, f(0) = 0 implies $\Delta(0, y) = 0$ for every $y \in L$.

Proof. (1) For every $x, y \in L$, we obtain

$$\Delta(x,y) = \Delta(x \land x,y) = (\Delta(x,y) \land f(x)) \lor (f(x) \land D(x,y))$$
$$= (\Delta(x,y) \lor f(x)) \lor D(x,y).$$

This implies $D(x,y) \leq \Delta(x,y)$ for every $x,y \in L$.

(2) Since $x \wedge x = x$ for all $x \in L$, we have by Proposition 2.10,

$$\Delta(x,y) = \Delta(x \land x,y) = (\Delta(x,y) \land f(x)) \lor (f(x) \land D(x,y))$$

$$= (\Delta(x,y) \land f(x)) \lor D(x,y)$$

$$= (\Delta(x,y) \lor D(x,y)) \land (f(x) \lor D(x,y))$$

$$= \Delta(x,y) \land f(x).$$

Therefore $\Delta(x,y) \leq f(x)$ for all $x,y \in L$. Similarly, we can check $\Delta(x,y) \leq f(y)$ for all $x,y \in L$.

(3) Since $f(x) \wedge D(w, y) \leq D(w, y) \leq \Delta(x, y)$ and $\Delta(x, y) \wedge f(w) \leq \Delta(x, y)$ for every $w, x, y \in L$, we obtain

$$(\Delta(x,y) \land f(w)) \lor (f(x) \land D(w,y)) \le \Delta(x,y) \lor \Delta(w,y).$$

That is, $\Delta(x \wedge w, y) \leq \Delta(x, y) \vee \Delta(w, y)$.

(4) Since $\Delta(x,y) \wedge f(w) \leq f(w)$ and $f(x) \wedge D(w,y) \leq f(x)$, we get

$$(\Delta(x,y) \land f(w)) \lor (f(x) \land D(w,y)) \le f(x) \lor f(w)$$

for every $w, x, y \in L$. That is, $D(x \wedge w, y) \leq f(x) \vee f(w)$ for every $w, x, y \in L$.

(5) Since 0 is the least element of L, we have

$$\Delta(0,y) = \Delta(0 \land 0, y) = (\Delta(0,y) \land f(0)) \lor (f(0) \land D(0,y))$$

= 0 \lor 0 = 0

for all
$$x, y \in L$$
.

COROLLARY 3.8. Let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D and let δ be a trace of Δ and let d be a trace of D. If L is a distributive lattice,, then the following conditions hold.

(1) $\Delta(x,y) \leq f(x) \wedge f(y)$ for every $x,y \in L$.

(2)
$$d(x) \le \delta(x) \le f(x)$$
 for every $x, y \in L$.
(3) $d(x) = x$ implies $\delta(x) = x$ for $x, y \in L$.

THEOREM 3.9. Let L be a distributive lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D and let δ a trace of Δ and let d be a trace of D. Then we have

$$\delta(x\wedge y) = D(x,y) \vee (f(x)\wedge d(y)) \vee (f(y)\wedge \delta(x))$$
 for all $x,y\in L.$

Proof. Using Proposition 3.7 (1), we have

$$\begin{split} \delta(x \wedge y) &= \Delta(x \wedge y, x \wedge y) \\ &= (\Delta(x \wedge y, x) \wedge f(y)) \vee (D(x \wedge y, y) \wedge f(x)) \\ &= (((\Delta(x, x) \wedge f(y)) \vee (f(x) \wedge D(x, y))) \wedge f(y)) \\ &\vee (f(x) \wedge ((D(x, y) \wedge f(y)) \vee (f(x) \wedge D(y, y)))) \\ &= (((\delta(x) \wedge f(y) \vee D(x, y)) \wedge f(y)) \vee (f(x) \wedge (D(x, y)) \\ &\vee (f(x) \wedge d(y)))) \\ &= ((\delta(x) \wedge f(y) \vee D(x, y)) \vee (D(x, y) \vee (f(x) \wedge d(y))) \\ &= (\delta(x) \wedge f(y)) \vee (d(y) \wedge f(x)) \vee D(x, y) \end{split}$$

for every $x, y \in L$.

THEOREM 3.10. Let L be a distributive lattice and let Δ_1 and Δ_2 be generalized symmetric bi-f-derivations associated with a same symmetric bi-f-derivation D. Then the mapping $\Delta_1 \wedge \Delta_2$ defined by

$$(\Delta_1 \wedge \Delta_2)(x,y) = \Delta_1(x,y) \wedge \Delta_2(x,y)$$

for every $x, y \in L$ is a generalized symmetric bi-f-derivations associated with a symmetric bi-f-derivation D.

Proof. For every $x, y, z \in L$, we have

$$(\Delta_1 \wedge \Delta_2)(x \wedge y, z) = \Delta_1(x \wedge y, z) \wedge \Delta_2(x \wedge y, z)$$

$$= ((\Delta_1(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)))$$

$$\wedge ((\Delta_2(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)))$$

$$= (((\Delta_1(x, z) \wedge f(y)) \wedge (\Delta_2(x, z) \wedge f(y))))$$

$$\vee (f(x) \wedge D(y, z))$$

$$= (\Delta_1(x, z) \wedge \Delta_2(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z))$$

$$= ((\Delta_1 \wedge \Delta_2)(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)).$$

This completes the proof.

 \Box

THEOREM 3.11. Let L be a distributive lattice and let Δ_1 and Δ_2 be generalized symmetric bi-f-derivations associated with a same symmetric bi-f-derivation D. Then the mapping $\Delta_1 \vee \Delta_2$ defined by

$$(\Delta_1 \vee \Delta_2)(x,y) = \Delta_1(x,y) \vee \Delta_2(x,y)$$

for every $x, y \in L$ is a generalized symmetric bi-f-derivations associated with a symmetric bi-f-derivation D.

Proof. For every $x, y, z \in L$, we have

$$(\Delta_1 \vee \Delta_2)(x \wedge y, z) = \Delta_1(x \wedge y, z) \vee \Delta_2(x \wedge y, z)$$

$$= ((\Delta_1(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)))$$

$$\vee ((\Delta_2(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)))$$

$$= (((\Delta_1(x, z) \wedge f(y)) \vee (\Delta_2(x, z) \wedge f(y))))$$

$$\vee (f(x) \wedge D(y, z))$$

$$= (\Delta_1(x, z) \vee \Delta_2(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z))$$

$$= ((\Delta_1 \vee \Delta_2)(x, z) \wedge f(y)) \vee (f(x) \wedge D(y, z)).$$

This completes the proof.

DEFINITION 3.12. Let L be a distributive lattice and let Δ be a generalized symmetric bi-f-derivations associated with a symmetric bi-f-derivation D and let δ be a trace of Δ . If $x \leq y$ implies $\delta(x) \leq \delta(y)$ for every $x, y \in L$, then δ is called an *isotone mapping*.

THEOREM 3.13. Let L be a distributive lattice with greatest element 1 and let f be a meet-homomorphism on L and let δ be a trace of generalized symmetric bi-f-derivation Δ associated with a symmetric bi-f-derivation D. Then the following conditions are equivalent.

- (1) δ is an isotone mapping on L.
- (2) $\delta(x) = f(x) \wedge \delta(1)$ for every $x \in L$.
- (3) $\delta(x \wedge y) = \delta(x) \wedge \delta(y)$ for every $x, y \in L$.
- (4) $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ for every $x, y \in L$.

Proof. (1) \Rightarrow (2). Since d is isotone and $x \leq 1$, we have $\delta(x) \leq \delta(1)$. By Proposition 3.7(1), we obtain $\delta(x) \leq f(x)$, and so $\delta(x) \leq f(x) \wedge \delta(1)$. By Corollary 3.8(2), we have $f(x) \wedge \delta(1) \leq \delta(x)$. Hence we obtain $\delta(x) = f(x) \wedge \delta(1)$ for all $x \in L$.

 $(2) \Rightarrow (3)$. Let $\delta(x) = f(x) \wedge \delta(1)$ for all $x \in L$. Then we have

$$\delta(x \wedge y) = f(x \wedge y) \wedge \delta(1) = (f(x) \wedge f(y)) \wedge (\delta(1) \wedge \delta(1))$$
$$= (f(x) \wedge \delta(1)) \wedge (f(y) \wedge \delta(1)) = \delta(x) \wedge \delta(y)$$

for all $x, y \in L$.

- $(3) \Rightarrow (1)$. Let $\delta(x \wedge y) = \delta(x) \wedge \delta(y)$ and $x \leq y$. Then $\delta(x) = \delta(x \wedge y) = \delta(x) \wedge \delta(y)$. Hence $\delta(x) \leq \delta(y)$ for every $x, y \in L$.
- $(1) \Rightarrow (4)$. Let δ be isotone. Since $x \leq x \vee y$ and $y \leq x \vee y$, $\delta(x) \leq \delta(x \vee y)$ and $\delta(y) \leq \delta(x \vee y)$. Hence $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ for every $x, y \in L$.
- $(4) \Rightarrow (1)$. Let $x \leq y$. Since $\delta(x) \leq \delta(x \vee y) = \delta(y)$, which implies $\delta(x) \leq \delta(y)$ for every $w, x, y \in L$. Hence δ is isotone.

DEFINITION 3.14. Let L be a lattice and Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. If $x \leq w$ implies $\Delta(x,y) \leq \Delta(w,y)$ for every $w,x,y \in L$, then Δ is called a generalized isotone symmetric bi-f-derivation of L.

Theorem 3.15. Let L be a lattice with greatest element 1, Δ a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D and let f be a meet-homomorphism on L. The following conditions are equivalent.

- (1) Δ is a generalized isotone symmetric bi-f-derivation of L.
- (2) $\Delta(x,y) \vee \Delta(w,y) \leq \Delta(x \vee w,y)$ for every $w,x,y \in L$.
- (3) $\Delta(x,y) = f(x) \wedge \Delta(1,y)$ for every $x,y \in L$.
- (4) $\Delta(x \wedge w, y) = \Delta(x, y) \wedge \Delta(w, y)$ for every $w, x, y \in L$.
- *Proof.* (1) \Rightarrow (2). Suppose that Δ is a generalized isotone symmetric bi-f-derivation. Since $x \leq x \vee w$ and $w \leq x \vee w$ for every $w, x, y \in L$, we obtain $\Delta(x,y) \leq \Delta(x \vee w,y)$ and $\Delta(w,y) \leq \Delta(x \vee w,y)$. Therefore, $\Delta(x,y) \vee \Delta(w,y) \leq \Delta(x \vee w,y)$.
- $(2) \Rightarrow (1)$. Suppose that $\Delta(x,y) \vee \Delta(w,y) \leq \Delta(x \vee w,y)$ and $x \leq w$ for all $w, x, y \in L$. Then we have

$$\Delta(x,y) \le \Delta(x,y) \lor \Delta(w,y) \le \Delta(x \lor w,y) = \Delta(w,y).$$

Hence Δ is a generalized isotone symmetric bi-f-derivation on L.

 $(1) \Rightarrow (3)$. Suppose that Δ is a generalized isotone symmetric bi-f-derivation. Since $\Delta(x,y) \leq \Delta(1,y)$, we have $\Delta(x,y) \leq f(x) \wedge \Delta(1,y)$ by Proposition 3.6 (1). Hence we have

$$\Delta(x,y) = (\Delta(1,y) \land f(x)) \lor D(x,y) = \Delta(1,y) \land f(x)$$

for every $x, y \in L$.

(3)
$$\Rightarrow$$
 (4). Suppose that $\Delta(x,y) = f(x) \wedge \Delta(1,y)$. Then we have
$$\Delta(x \wedge w, y) = f(x \wedge w) \wedge \Delta(1,y)$$
$$= f(x) \wedge f(w) \wedge D(1,y)$$
$$= (f(x) \wedge D(1,y)) \wedge (f(w) \wedge D(1,y))$$
$$= D(x,y) \wedge D(w,y)$$

for every $w, x, y \in L$.

 $(4) \Rightarrow (1)$. Let $\Delta(x \wedge w, y) = \Delta(x, y) \wedge \Delta(w, y)$ and $x \leq w$. Then we have $\Delta(x, y) = \Delta(x \wedge w, y) = \Delta(x, y) \wedge \Delta(w, y)$. Therefore, $\Delta(x, y) \leq \Delta(w, y)$ for every $w, x, y \in L$.

Let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D and let δ be a trace of Δ and let d be a trace of D. For each $a \in L$ and define sets $Fix_d(L)$ and $Fix_{\delta}(L)$ by

$$Fix_D(L) = \{x \in L \mid D(x, a) = f(x)\}\$$

and

$$Fix_{\Delta}(L) = \{ x \in L \mid \Delta(x, a) = f(x) \}.$$

LEMMA 3.16. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. Then we have $Fix_D(L) \subseteq Fix_{\Delta}(L)$.

Proof. Let $x \in Fix_D(L)$. Then we have D(x, a) = f(x) for $a \in L$. Hence

$$\Delta(x, a) = \Delta(x \land x, a) = (\Delta(x, a) \land f(x)) \lor (f(x) \land D(x, a))$$
$$= (\Delta(x, a) \land f(x)) \lor (f(x) \land f(x))$$
$$= (\Delta(x, a) \land f(x)) \lor f(x) = f(x)$$

This implies $x \in Fix_{\Delta}(L)$, that is, $Fix_D(L) \subseteq Fix_{\Delta}(L)$.

PROPOSITION 3.17. Let L be a distributive lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. If f is isotone, $x \leq y$ and $y \in Fix_D(L)$, then $x \in Fix_{\Delta}(L)$ for all $x, y \in L$.

Proof. Let $y \in Fix_D(L)$. Then we get D(y,a) = f(y). Hence we have $\Delta(x,a) = \Delta(x \wedge y,a) = (\Delta(x,a) \wedge f(x)) \vee (f(x) \wedge D(y,a))$ $= (\Delta(x,a) \wedge f(x)) \vee (f(x) \wedge f(y)) = (\Delta(x,a) \wedge f(x)) \vee f(x)$ $= (\Delta(x,a) \vee f(x)) \wedge (f(x) \vee f(x)) = f(x) \vee f(x) = f(x).$

This implies $x \in Fix_{\Lambda}(L)$.

DEFINITION 3.18. Let L be a lattice. The mapping Δ satisfying $\Delta(x \vee y, z) = \Delta(x, z) \vee \Delta(y, z)$ for all $x, y, z \in L$, is called a *joinitive mapping* on L.

THEOREM 3.19. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. If f is a join-homomorphism on L and let Δ is joinitive, then $x, y \in Fix_{\Delta}(L)$ implies $x \vee y \in Fix_{\Delta}(L)$.

Proof. Let $x, y \in Fix_{\Delta}(L)$. Then $\Delta(x, a) = f(x)$ and $\Delta(y, a) = f(y)$. Hence $\Delta(x \vee y, a) = \Delta(x, a) \vee \Delta(y, a) = f(x) \vee f(y) = f(x \vee y)$, which implies $x \vee y \in Fix_{\Delta}(L)$.

PROPOSITION 3.20. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. If f is a meet-homomorphism on L and $x \in Fix_{\Delta}(L)$ and $y \in Fix_{D}(L)$, we have $x \wedge y \in Fix_{\Delta}(L)$ for all $x, y \in L$.

Proof. Let $x \in Fix_{\Delta}(L)$ and $y \in Fix_{D}(L)$. Then $f(x) = \Delta(x, a)$ and f(y) = D(y, a). Hence we have

$$\Delta(x \wedge y, a) = (\Delta(x, a) \wedge f(y)) \vee (f(x) \wedge D(y, a))$$
$$= (f(x) \wedge f(y)) \vee (f(x) \wedge f(y))$$
$$= f(x) \wedge f(y) = f(x \wedge y).$$

Hence $x \wedge y \in Fix_{\Delta}(L)$.

PROPOSITION 3.21. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. Then, for every $w, x, y \in L$, the following identities hold.

(1) If Δ is a generalized isotone symmetric bi-f-derivation, then

$$\Delta(x,y) = D(x,y) \lor (\Delta(x \lor w,y) \land f(x))$$

for every $w, x, y \in L$.

(2) If f is a join-homomorphism on L, then

$$\Delta(x,y) = D(x,y) \lor (\Delta(x \lor w,y) \land f(x))$$

for every $w, x, y \in L$.

(3) If f(x) is an increasing function, then

$$\Delta(x,y) = D(x,y) \lor (f(x) \land \Delta(x \lor w,y))$$

for every $w, x, y \in L$.

Proof. (1) Let Δ be a generalized isotone symmetric bi-f-derivation. Then we have

$$\begin{split} \Delta(x,y) &= \Delta((x \vee w) \wedge x, y) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee (f(x \vee w) \wedge D(x, y)) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y) \end{split}$$

since $D(x,y) \leq \Delta(x,y) \leq \Delta(x \vee w,y) \leq f(x \vee w)$ for every $w,x,y \in L$.

(2) Since $D(x,y) \le f(x) \le f(x) \lor f(w)$ and $f(x \lor w) = f(x) \lor f(w)$, we obtain

$$\begin{split} \Delta(x,y) &= \Delta((x \vee w) \wedge x, y) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee (f(x \vee w) \wedge D(x, y)) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y) \end{split}$$

for every $w, x, y \in L$.

(3) Since f is an increasing function and $x \le x \lor w$, we have $D(x,y) \le f(x) \le f(x \lor w)$ and so,

$$\begin{split} \Delta(x,y) &= \Delta((x \vee w) \wedge x, y) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee (f(x \vee w) \wedge D(x, y)) \\ &= (\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y) \end{split}$$

for every $w, x, y \in L$.

References

- [1] G. Birkhoof, Lattice Theory, American Mathematical Society Colloquium, 1940.
- [2] Y. Ceven, Symmetric bi-derivations of lattice, Quaest. Math., 32 (2009), no. 1-2, 241-245.
- [3] Y. Ceven and M. A. Öztürk, On f-derivations of lattice, Bull. Korean Math. Soc., 45 (2008), no. 4, 701-707.
- [4] L. Ferrari, On derivations of lattices, Pure math. appl., 12 (2001), no. 4, 365-382.
- [5] S. Harmaitree and Utsanee Leerawat, *The generalized f-derivations of lattices*, Scientiae Magna, **7** (2011), no. 1, 114-120.
- [6] B. Hvala, Generalized derivation in rings, Commun. Algebra., 26 (1998), no. 4, 1147-1166.
- [7] M. A. Öztürk, H. Yazarh and K. H. Kim, Permuting tri-derivations in lattices, Quaest. Math., **32** (2009), no. 3, 415-425.
- [8] H. Yazarh and M. A. Öztürk, *Permuting tri-f-derivations in lattices*, Commun. Korean Math. Soc., **26** (2011), no. 13-21.
- [9] A. R. Khan and M. A. Chaudhry, *Permuting f-derivations on lattices*, Int. J. Algebra., **5** (2011), 471-481.

- [10] F. Karacal, On the direct decomposability of strong negations and S-implication operators on product lattices, Inf. Sci., 176 (2006), 3011-3025.
- [11] K. H. Kim, Symmetric bi-f-derivations in lattices, Int. J. Math. Arch., $\bf 3$ (2012), no. 10, 3676-3683.
- [12] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc., 8 (1957), 1093-1100
- [13] G. Szász, Derivations of lattices, Acta Sci. Math. (Szeged), 37 (1975), 149-154.
- [14] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inf. Sci., 178 (2008), no. 2, 307-316.

Kyung Ho Kim Department of Mathematics, Korea National University of Transportation Chungju 27469, Republic of Korea *E-mail*: ghkim@ut.ac.kr